2. Differentiation

- Suppose f is a real function and c is a point in its domain. Then, the derivative of f at c is defined by, $f'(c) = \lim_{h \to 0} \frac{f(c+h) f(c)}{h}$
- Derivative of a function f(x), denoted by $\frac{d}{dx}(f(x))$ of f'(x), is defined by $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$

Example:

Find derivative of $\sin 2x$.

Solution:

Let
$$f(x) = \sin 2x$$

$$f'(x) = \lim_{h \to 0} \frac{\sin 2(x+h) - \sin 2x}{h}$$

$$= \lim_{h \to 0} \frac{2\cos(2x+h) \cdot \sin h}{h}$$

$$= 2\lim_{h \to 0} \cos(2x+h) \cdot \lim_{h \to 0} \frac{\sin h}{h}$$

$$= 2 \times \cos 2x \times 1$$

$$= 2 \cos 2x$$

• For two functions f and g, the rules of algebra of derivatives are as follows:

o
$$(f+g)' = f' + g'$$

$$(f-g)' = f'-g'$$

o
$$(fg)' = f'g'$$
 [Leibnitz or product rule]

$$\begin{pmatrix} \frac{f}{g} \end{pmatrix}' = \frac{f'g - fg'}{g^2}, \text{ where } g \neq 0 \text{ [Quotient rule]}$$

• Every differentiable function is continuous, but the converse is not true.

Example:

f(x) = |x| is continuous at all points on real line, but it is not differentiable at x = 0.

$$x = 0.$$
Since L.H.S $h \to 0^{-}$

$$= \lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \frac{-h}{h} = -1$$

$$= \lim_{h \to 0^{+}} \frac{f(0+h) - f(0)}{h} = \frac{h}{h} = 1$$
R.H.S $h \to 0^{+}$

$$\therefore \text{L.H.S} \neq \text{R.H.S.}$$

Therefore, f'(x) does not exist at x = 0; i.e., f is not differentiable at x = 0. The derivatives of some useful functions are as follows:

o
$$\frac{\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}}{\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}}$$

o
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

o $\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$
o $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}}$
o $\frac{d}{dx}(\csc^{-1}x) = \frac{-1}{x\sqrt{x^2-1}}$

• Chain rule: This rule is used to find the derivative of a composite function. Let f = v o u. Suppose t = u (x); and if both $\frac{dt}{dx}$ and $\frac{dv}{dt}$ exist, then $\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx}$ Similarly, if $f = (w \circ u) \circ v$, and if t = v(x), s = u(t), then $\frac{df}{dx} = \frac{d(w \circ u)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$

Example: Find the derivative of $\sin^2(\log x + \cos^2 x)$

Solution:

$$\frac{d}{dx}\left[\sin^2\left(\log x + \cos^2 x\right)\right] = 2\sin\left(\log x + \cos^2 x\right) \times \frac{d}{dx}\left[\sin\left(\log x + \cos^2 x\right)\right]$$

$$= 2\sin\left(\log x + \cos^2 x\right) \cdot \cos\left(\log x + \cos^2 x\right) \times \frac{d}{dx}\left(\log x + \cos^2 x\right)$$

$$= \sin 2\left(\log x + \cos^2 x\right) \cdot \left[\frac{1}{x} + 2\cos x \times \frac{d}{dx}(\cos x)\right]$$

$$= \sin\left(\log x^2 + 2\cos^2 x\right) \times \left(\frac{1}{x} - 2\sin x \cos x\right)$$

$$= \left(\frac{1}{x} - \sin 2x\right)\sin\left(\log x^2 + 2\cos^2 x\right)$$

• Derivative of a function $f(x) = [u(x)]^{v(x)}$ can be calculated by taking logarithm on both the sides, i.e. $\log f(x) = v(x) \log [u(x)]$, and then differentiating both sides with respect to x.

Example: If
$$y = x^{x^{x^{x^{y^{y^{y}}}}}}$$
, find $\frac{dy}{dx}$

Solution:

Let If
$$y = x^{x^{x^{y'}}} = x^y$$

 $\therefore \log y = y \log x$

$$\Rightarrow \frac{d}{dx}(\log y) = \frac{d}{dx}(y\log x)$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{dy}{dx} \log x + \frac{y}{x}$$

$$\Rightarrow \frac{dy}{dx} \left[\frac{1}{y} - \log x \right] = \frac{y}{x}$$

$$\Rightarrow \frac{dy}{dx} = \frac{\frac{y}{x}}{\frac{1}{y} - \log x} = \frac{y^2}{x - xy \log x}$$

- If the variables x and y are expressed in the form of x = f(t) and y = g(t), then they are said to be in parametric form. In this case, $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{g'(t)}{f'(t)}$, provided $f'(t) \neq 0$
- If y = f(x), then $\frac{dy}{dx} = f'(x)$ and $\frac{d^2y}{dx^2}$ or $f''(x) = \frac{d}{dx} \left(\frac{dy}{dx}\right)$

Here, f''(x) or $\frac{d^2y}{dx^2}$ is called the second order derivative of y with respect to x.

